Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation.

نویسندگان

  • K Engel
  • A Kotlyarov
  • M Gaestel
چکیده

UNLABELLED To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. KEYWORDS nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2

BACKGROUND Mitogen-activated protein (MAP) kinases (or extracellular signal regulated kinases; Erks) and stress-activated protein (SAP) kinases mediate cellular responses to a wide variety of signals. In the Erk MAP kinase pathway, activation of MAP kinases takes place in the cytoplasm and the activated enzyme moves to the nucleus. This translocation to the nucleus is essential to MAP kinase si...

متن کامل

Phosphorylation regulates the nucleocytoplasmic distribution of kinase suppressor of Ras.

KSR (kinase suppressor of Ras) has been proposed as a molecular scaffold regulating the Raf/MEK/ERK kinase cascade. KSR is phosphorylated on multiple phosphorylation sites by associated kinases. To identify potential mechanisms used by KSR to regulate ERK activation, green fluorescent protein was fused to intact and mutated KSR constructs lacking specific phosphorylation sites, and the subcellu...

متن کامل

Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain.

LIM-kinase 1 (LIMK1) is a serine/threonine kinase that phosphorylates cofilin and regulates actin-filament dynamics. LIMK1, which contains two LIM domains and a single PDZ domain, localizes predominantly in the cytoplasm, but its mutant, deleted with the PDZ domain, localizes mainly in the nucleus, thereby indicating that the PDZ domain plays a role in the cytoplasmic localization of LIMK1. Her...

متن کامل

Nuclear accumulation of globular actin as a cellular senescence marker.

We evaluated the nuclear actin accumulation as a new marker of cellular senescence, using human diploid fibroblast (HDF), chondrocyte primary cultures, Mv1Lu epithelial cells, and Huh7 cancer cells. Nuclear accumulation of globular actin (G-actin) and dephosphorylated cofilin was highly significant in the senescent HDF cells, accompanied with inhibition of LIM kinase (LIMK) -1 activity. When nu...

متن کامل

Mitogen-activated protein kinase regulates nuclear association of human progesterone receptors.

Breast cancers often have increased MAPK activity; this pathway may drive breast cancer cell growth by targeting steroid hormone receptors. MAPK phosphorylates human progesterone receptors (PRs) on Ser294, thus regulating several aspects of PR activity. To study the role of PR Ser294 phosphorylation on subcellular distribution, we stably expressed wild-type (wt) or S294A (Ser294 to Ala) PR-B in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 1998